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A Note on a Combined Approach 
to the Pallet Loading Problem 

Abstract 

In a recent paper Hodgson developed a dynamic programming based heuristic 

for the two-dimensional pallet loading problem. This note presents improve- 

ments to that procedure which have resulted in reductions of CPU run times of 

up to 20 to 1 as well as drastic lowering of memory requirements. Other 

implications of the improvements are also discussed. 



Introduction 

In a recent paper, Hodgson [1] developed a dynamic programming based 

heuristic for the two-dimensional pallet loading problem. In the course of 

evaluating the computational results for the procedure, it was noted that the 

quality of solutions obtained by the procedure (percent coverage of the pallet 

area) was very good. However, the CPU seconds required to compute solutions 

were larger than would be desireable for application in a real-time environ- 

ment.  It was observed that there were elements of the procedure that might be 

enhanced in order to improve computation times. The results of experimental 

computation indicated that computation time was extremely sensitive to the 

quality of a bounding function that was used in the procedure. It was con- 

jectured that it might be possible to obtain significant computational 

improvements if the quality of the bounding function was improved even 

slightly. 

In the following, the dynamic programming based pallet loading procedure 

is reviewed along with the development of the bounding function. The results 

of the experimentation with heuristic knapsack procedures is then discussed. 

A fundamental improvement in the bounding function is developed and another 

improvement taken from observations of real-world pallet loaders and furniture 

movers is presented. The computational experiments from the previous paper 

[1] are duplicated and the results compared. 



The Pallet Loading Procedure Reviewed 

The  reader should note that  in the interests  of brevity,  details  of the 

procedure are not  given.    The interested  reader is  referred to the original 

paper [1].    The key  element of the dynamic programming based procedure is that 

the pallet  can be partitioned by a  rectangular section   (see Figure  1).     If a 

good load can be found for the left-hand sub-pallet   (x,y)   (upper left-hand 

rectangle of Figure  1),  then a good  load  for the left-hand sub-pallet   (x',y') 

might  be found by  packing boxes  into the shaded portion  of Figure 1   (i.e., 

sub-pallet   (x',y')  minus  sub-pallet   (x,y)).     In this  way  it would be possible 

to build  up to the entire pallet  (L,W).     In  order to consider all   possible 

ways  of building up to  loading the entire pallet the concepts of dynamic  pro- 

gramming are used.    The following definitions  are useful. 

N =  Set of all   boxes to be considered  for loading   (of 
size n).     . 

I  = Subset of the boxes,   1,2,...,n. 

J -  Subset of the boxes,  l,2,...,n. 

x,y = Two dimensional   index specifying a rectangular 
partition  (Figure  1). 

f(x,y,I)  = The maximum area  of the left-hand subpallet of 
x,y which can be covered using the subset  of 
boxes  I. 

h(x,y,x',y',1)  = The maximum area of the left-hand sub-pallet of 
x',y'   less the left-hand sub-pallet of  x,y 
(shaded area of Figure 2)  which  can be covered 
using boxes  from the set  I. v. 

The dynamic programming equation  for the pallet  loading problem can be 

given as  follows: 

f(x',yM)  = max{f(x,y,J)+h(x,y,x',yM-J)} (1) 
X ^ x' 

X < y' 

J ^ I . 



r 

(0,0) 

(L,W)   ( 

Figure 1: Pallet with Two Rectangular Partitions (x,y) and (x',y') 

\   I 



In order to limit the size of the state space only one partial solution 

f(x,y,I) for each partition x,y is saved. That is, 

f'(x,y) = max{f(x,y,I)}. 
I . ; " 

The function h(x,y,x',y',1) itself requires an optimization in order to pack 

the L-shaped area (shaded area of Figure 1). This is done simply by breaking 

the L-shaped partition into rectangular areas and filling each area using a 

linear dynamic programming knapsack procedure. 

In order to eliminate unnecessary computation in the procedure a bounding 

function is used: 

B(L,W) = the maximum possible coverage of a pallet 
(sub-pallet) of length L and width W using 
the set of boxes N. 

The bounding function is developed by solving relaxations of the pallet 

loading problem. In the present case, two different relaxations are used. 

The fi rst is' -^ - 

n 
C (x) = maximize V i. x. + w.x 
n^ ' • ^1  "1 1   1 n+1 

n 
s.t.     y Ji. X. + w.x . < X 

.^,11   1 n+1 — 

x^ . x^^. =0    i = 1,2,...,n 

, - X. = 0,1       i = 1,2,...,2n 

Note that   ■ %..   = length of box i, and 

w. = width of box i. J 



The function Cp{X) specifies the maximum linear coverage that is possible on 

the line segment [0,X] choosing from the set of boxes l,...,n (positioning 

them by either length or width). For a pallet (or rectangular sub pallet) of 

size L by W, an upper bound on the maximum area coverage possible is Cp(L)*Cp(W) 

The funcion C^(X) is computed in a straight forward fashion using a dynamic 

programming knapsack routine. 

The second relaxation is 

n 
D (Z) = maximize I J!.^ • w. . x. 

n 
s.t.     y JL . w. . X. < Z 

i=l ^   '        ' - 

x^ = 0,1,    i = l,2,...,n 

The function D^(Z) specifies the maximum area coverage that is possible 

on a pallet of area Z, choosing from the set of boxes l,...,n, and assuming 

that the boxes can be "mashed" into any shape while maintaining constant area. 

For a pallet (or rectangular sub-pallet) of size L by W, an upper bound on the 

maximum area coverage possible is D^(L*W). The function 0^(1), again, is 

computed in a straightforward fashion using a dynamic programming knapsack 

routine. The bounding function used by the procedure is 

B(L,W) = min{CjL)*C^(W),D^(L*W)}. (2) 



Computational Improvements 

The first attempt at computational improvement was to incorporate a 

stronger bounding function. The bounding function can be improved by making 

the following simple observation: 

B(L,W) = D^(Cr,(L)*Cn(W))lmin{C^(L)*C^(W),D^(L*W)}. (3) 

Substituting equation (3) for equation (2) results in a substantial reduction 

in computational effort. Limited experimentation resulted in reductions of up 

to 4 to 1 in CPU time. 

A second attempt at computational improvements came from our observations 

of people loading pallets in the real world. A typical approach in loading a 

pallet is to take the largest box that has to be loaded and place it in one 

corner. Then the pallet load is built around the corner box. In the previous 

procedure every box in the set is a candidate to be placed in the corner, 

thereby greatly increasing the combinatorics involved in loading the pallet. 

This was noted previously [1] and the original version of the procedure 

allowed the user to dictate the corner box, if so desired. In the present 

case, the procedure was modified so that, unless the user desires otherwise, 

the box with the largest area coverage is always placed in the corner. 

S 



Experimental Computation 

The improved pallet loading procedure was programmed in Fortran IV and 

implemented on the University of Florida IBM 3033. Problems with a data set 

of 30 boxes were generated with box dimensions uniformly distributed (integer 

values only) between upper and lower bounds as indicated in Tables 1, 2, and 

3. Table 1 contains computation times in virtual seconds. Table 2 contains 

the number of undominated partial solutions generated by the dynamic 

program. Table 3 contains the percent area of the pallet covered. Each entry 

of the tables is the average of five problems. The experimentation duplicates 

that of the previous paper [1]. The upper left-hand entries of each box are 

from the previous experimentation. The lower right-hand entries are from the 

present experimentation. 

As with the previous experimentation the computation times are clearly 

dependent on both pallet size and the range of box dimensions (Table 1). What 

is interesting is the overall reduction in computational effort. The relative 

reduction in computation increases with both the size of the problem and the 

difficulty (range of box sizes) with a maximum reduction of almost 20 to 1. 

It should be noted that it is not possible to compare times for the most 

difficult problem sets since the original procedure was not capable of solving 

the problems in 30 seconds of computation. 

The number of undominated partial solutions (a measure of the storage 

requirements of the procedure) is given in Table 2. The reductions obtained 

are due solely to placing only one candidate box in the corner to start the 

procedure as the improved bounding function does not affect the number of 

undominated solutions. While the growth in requirement for computer storage 

is also dependent on pallet size and the range of box dimensions, reductions 

ranging from the order of 10 to 1 or better for the smaller pallet sizes and 3 
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to 1 for the larger pallet sizes have been obtained thereby significantly 

enhancing the potential applicability of the procedure on computers of limited 

storage capacity. 

The quality of the solutions for the randomly generated problems is 

measured by the percent of the pallet area covered (Table 3). Four out of the 

five pallet sizes used in the experimentation (60 x 40, 80 x 60, 80 x 80, and 

100 X 80) were chosen so that there would be a high likelihood of the exis- 

tance of an extremely good solution. Across all comparable solutions there 

was an average loss of 0.26% in terms of area coverage. This is caused by the 

limitation imposed by placing the largest box in the corner. The effect is 

greatest in the smallest pallet size (60 x 40), as might be expected. Con- 

sidering only the larger pallets (80 x 60 and larger), the loss in area 

coverage is 0.054% on the average. In our interactive experiments, where the 

user was allowed to choose the corner box, the loss in area coverage is 

virtually zero. 

One pallet size used in the experimentation (70 x 50) was chosen so that 

there would not be a high likelihood of good solutions. With all boxes having 

dimensions of 20 x 20, the best possible coveage would be 68.6%. With box 

dimensions randomly distributed from 18-22, the best possible coverage (from 

an infinite set of boxes) would be 83.0% (versus 78.9% attained). With box 

dimensions randomly distributed from 17-23, the upper bound would be 92.0% 

(versus 86.1% attained), and for all other problems the upper bound would be 

100%. It might be noted that for the 18-22, and 17-23 problems (and the 18-22 

problem on a 100 x 80 pallet), there is actually an increase in the percent 

coverage. This is because the original version of the knapsack subproblem 

considered only 15 boxes at a time. The current version was expanded to 

consider up to 30 boxes at a time. 

11 



In synopsis, it is important to point out that the results presented in 

Table 1 have been based on box sizes with uniformly distributed dimensions. 

Real loading problems seldom have uniformly distributed box dimensions, but 

rather tend to have lengths, widths and heights that cluster at particular 

values. Generally, for real problems, the bounding function, generates even 

stronger bounds than those obtained in our experimentation resulting in even 

greater reductions in computation times. The results in Table 2 demonstrate 

the effect of limiting the choice of the candidate corner box and how this has 

resulted in reduced storage requirements. Finally, Table 3 shows that the 

price paid in terms of the quality of the solutions obtained is relatively 

insignificant, allowing one to conclude that the improvements are in fact a 

significant step forward in terms of the use of the procedure in a real-time 

environment. ^ 

12 



Reference 

[1] Hodgson, Thorn J., "A Combined Approach to the Pallet Loading 
Problem", HE Transactions, Vol. H, No. 3, Sept., pg. 175 
(1982). 

13 


